
ANTE PROTOCOL V0.5 LITEPAPER

hello@ante.finance

Abstract. Ante is a smart contract testing protocol that constructs a new primitive allowing
anyone to express confidence or doubt about the success or failure of live, on-chain smart contract
tests. We explain the design of Ante Protocol v0.5 and show how to use Ante to signal pseudonymous
confidence and provide additional live protection to protocols.

Contents

1. Introduction 1
1.1. Motivation 1
1.2. Summary of the Ante Protocol 2
2. System Design 2
2.1. On-chain invariants and Ante Tests 2
2.2. Staking, challenging, and verifying via Ante Pools 3
2.3. Implementation details 4
3. Applications 4
3.1. Signaling legitimacy 4
3.2. On-chain trust quantification 4
4. Possible extensions to the Ante Protocol 4
4.1. Multiple collateral asset support 4
4.2. Ante Metapools 5
4.3. Emergency freezes of protocols based on Ante Tests 5
Disclaimer 5
References 5

1. Introduction

1.1. Motivation. Interest in decentralized finance (DeFi) has increased over 100x since 2020, with
over $100B total value locked (TVL) in DeFi smart contracts. The increased interest involves two
key factors: first, the emergence and popularization of permissionless smart contract systems offer-
ing economically productive on-chain uses of digital assets, such as lending (Aave [1], Compound
[6]) and automated liquidity provision (Uniswap [2], Curve [4]); second, the advent of liquidity
mining, a user incentive mechanism where projects award early users with tokens for usage.

A problem gating further growth for DeFi is that smart contracts are by nature subject to
potential loss of user funds. This can occur via a bug in or hack of smart contract code or an
economic exploit of a poorly designed protocol mechanism. Further, many project teams are
pseudonymous, opening the possibility that the team behind a protocol may be dishonest and
use a hidden exploit or back door to steal user funds. For many users, these uncertainties add
unnecessary risk, and users have unexpectedly lost funds in many projects in 2020, such as bZX
($8m+), Yam, dForce ($25m), Eminence ($15m), Harvest ($24m), Pickle ($19m), and more [7].

Date: June 2021.

1

hello@ante.finance

2 HELLO@ANTE.FINANCE

DeFi lacks clarity around its security and risks, and Ante Protocol was designed to provide a
market-based solution to clarify user trust in DeFi protocols.

1.2. Summary of the Ante Protocol. Ante (Autonomous Native Testing Environment) Pro-
tocol is a smart contract testing protocol on Ethereum. Ante allows anyone to create and deploy
Ante Tests, which are live, on-chain tests that confirm a target protocol’s invariants are valid. DeFi
protocol developers and project supporters (such as users or investors) can signal confidence in the
protocol’s robustness by staking on Ante Pools corresponding to these tests. Security experts can
monetize their expertise by identifying flawed Ante Tests or broken invariants by challenging the
corresponding Ante Pools and verifying the Ante Test’s status. If a failure is confirmed by the Ante
Test, the funds staking an Ante Pool are paid pro rata to pool challengers, with a bonus for the
challenger who initiated the test. The remainder of the time, challengers’ balances experience an
ongoing decay that is claimable by stakers pro rata.

Because staked funds are at risk if tests fail, the total amount of staking capital and its ratio
to challenging capital reflects a protocol’s perceived stability. This gives users an additional signal
about which DeFi protocols are legitimate by allowing them to compare the amount of capital staked
behind similar protocols. In addition, users can verify which protocols have responsibly written and
deployed live tests, which provide additional protection for secure smart contract systems beyond
ordinary static, off-chain testing. In this way, Ante makes it easier for DeFi protocol developers to
bootstrap legitimacy and trust in their protocols.

2. System Design

The Ante Protocol allows protocols on Ethereum to signal confidence in their code by putting
“skin in the game” behind programmatically checked properties of their contract state, referred
to as on-chain invariants. We briefly describe the mechanism below and devote the rest of this
section to a detailed description.

To use Ante for a given protocol, developers codify an invariant in a smart contract following the
AnteTest interface which contains a function checking on-chain whether the invariant currently
holds. They then generate an Ante Pool instance for that Ante Test following the IAnteTest

interface using the AntePoolFactory. The Ante Pool allows anyone to deposit capital, either as a
staker (to express the belief that the Ante Test will always pass) or as a challenger (to express
the belief that the Ante Test may fail).

At any time, any challenger can verify on-chain if the Ante Test still passes. If such a check
fails, then stakers’ funds are frozen and distributed to challengers and the test verifier. Meanwhile,
challengers pay an ongoing decay reward to stakers via the Ante Pool.

2.1. On-chain invariants and Ante Tests. Ante Tests test on-chain invariants, which are
boolean statements which can make reference to any data in the current Ethereum state. Ante
Tests must implement this statement in the checkTestPasses() function in their interface. Though
Ante may most frequently be applied to smart contracts from a single protocol, Ante Tests are also
free to make use of data from multiple other smart contracts.

Simple examples of possible invariants for Ante Tests include:

• To test that WBTC has not been compromised, an invariant may check

WBTCToken.totalSupply() ≤ 21 · 106 · 108

to ensure total supply of WBTC is at most 21 million.
• To test that the Eth2DepositContract address does not have ≈99.99% of its current ETH

withdrawn (likely by a compromise), an invariant may check

depositContract.balance ≥ 500 · 1018.

HELLO@ANTE.FINANCE
AnteTest
IAnteTest
AntePoolFactory
checkTestPasses()
WBTCToken.totalSupply()
Eth2DepositContract
depositContract.balance

ANTE PROTOCOL V0.5 LITEPAPER 3

• To test that the circulating supply of wETH matches the balance of ETH in its contract,
an invariant may check

WETH9Addr.balance = WETH9Token.totalSupply().

Examples which might be more relevant for decentralized finance protocols include:

• For overcollateralized lending protocols, an invariant may verify correct overcollateralization
at a per-position or protocol level by checking

value_of_debt ≤ value_of_collateral · safety_factor.

• For constant function market makers (see [3]) which allow trades which increase the value
of a function f(X,Y) = K of the reserve amounts X and Y of two tokens, an invariant
may verify the relation relating reserves to the constant K in fact holds. For example, for
Uniswap v2 [2], one could test that in UniswapV2Pair.sol the following equality holds:

reserve0 · reserve1 ≥ kLast.

NB: If the 5bp Uniswap v2 protocol fee is off, kLast is fixed at 0, and this test will always
pass. It will be a more non-trivial test for pairs with the protocol fee turned on.

• For protocols with treasury controlled by a multi-sig wallet, an invariant may verify

balance_of_multisig ≥ 0.01 · initial_balance

to ensure that the multi-sig members of a potentially anonymous team have not moved
more than 99% of the multi-sig funds. While such a move could in principle be legitimate,
it may also be caused by a compromise of the multi-sig or malicious behavior on the part of
its members. Such an Ante Test would thus provide partial protection against a so-called
“rug pull” by the protocol team.

2.2. Staking, challenging, and verifying via Ante Pools. Once an Ante Test has been de-
ployed, developers can integrate it with an Ante Pool, a smart contract which allows users to stake,
challenge, or verify the test. We describe each operation in turn.

• Staking: Stakers deposit ETH into the Ante Pool to stake an Ante Test and express the
view that the test will continue to pass. Stakers earn block-by-block yield by proportion-
ally splitting decay rewards from challengers, but lose their deposit if the Ante Test fails
verification.

• Challenging: Challengers deposit ETH into the Ante Pool to challenge an Ante Test and
express the view that the test will fail at some point. If on-chain verification of the Ante
Test fails at any point, the challengers will receive their deposits back as well as split the
stakers deposits less a 5% bounty for the verifier. However, challengers’ deposit decays by
100 gwei/ETH each block (approximately 20% annualized) to pay for stakers’ decay reward.

• Verifying: Any challenger who has deposited for at least 12 blocks can verify that the Ante
Test passes for the current on-chain state by calling the checkTestPasses() function. If
the function returns true, i.e. the test passes, nothing happens. If the function returns
false, i.e. the test fails, the verifier is paid a bounty of 5% of stakers’ deposits, and the rest
of the stakers’ deposits are rewarded pro rata to all challengers.

Stakers and challengers may withdraw their deposits in an Ante Pool if they no longer wish to stake
or challenge. To allow sufficient time for verifiers to respond on-chain to knowledge of an exploit,
stakers must wait for 6000 blocks (approximately 1 day) to withdraw funds.

WETH9Addr.balance
WETH9Token.totalSupply()
value_of_debt
value_of_collateral
safety_factor
UniswapV2Pair.sol
reserve0
reserve1
kLast
kLast
balance_of_multisig
initial_balance
checkTestPasses()

4 HELLO@ANTE.FINANCE

2.3. Implementation details. We now describe and explain some technical details affecting the
precise implementation of Ante.

• Waiting times for deposits and withdrawals: To prevent challengers from depositing
funds to frontrun a verification which causes an Ante Test to fail, challengers are only
eligible to receive payouts after their deposits have been in an Ante Pool for at least 12
blocks. This interval was chosen as a threshold for approximate finality on Ethereum.

To prevent stakers from withdrawing funds in response to an exploit which is publicly
known off-chain but has not yet caused the relevant Ante Test to fail on chain, stakers must
wait for 6000 blocks (approximately 1 day) to withdraw funds. This interval was chosen to
allow verifiers sufficient time to verify an Ante Test before stakers withdraw funds.

• Reversion of Ante Tests: Reversions of the checkTestPasses() function are treated
as failures of the corresponding Ante Test. It is therefore the responsibility of stakers to
ensure that any test they stake on can be executed correctly.

• Upgradeable contracts: Ante Tests are immutable. Thus if a contract referenced by an
Ante Test is upgraded in an incompatible way, the checkTestPasses() function will revert
and the Ante Test will always fail. We recommend that projects using Ante either upgrade
in a compatible way or coordinate off-chain for all stakers in the un-upgraded Ante Test to
migrate to a new Ante Test.

3. Applications

3.1. Signaling legitimacy. New DeFi projects wishing to express confidence in their code may use
Ante as a new hard-to-fake signal of legitimacy. For example, if the developers or investors behind
a newly released overcollateralized lending protocol are willing to stake a substantial amount of
funds on an Ante Test checking that the protocol remains solvent, users may have more confidence
that the code and mechanism design enforcing solvency will work in practice. On the other hand,
if security experts are dubious about the design and implementation of the protocol, they may
challenge the Ante Test, thereby justly reducing user confidence.

Such a decentralized measure of project legitimacy is especially valuable for pseudonymous teams
who may lack other means of demonstrating good-faith, but we envision it to complement tools
such as audits, bug bounties, and traditional insurance coverage for protocols of all kinds.

3.2. On-chain trust quantification. Users can compute a decentralized trust score between
0 and 100 for each Ante Test based on its Ante Pool participation using the formula

decentralized_trust_score =
staker_deposits

staker_deposits + challenger_deposits
· 100.

This score provides a rough indication of the aggregated confidence that stakers and challengers
on the Ante Pool have that the Ante Test will continue to pass. Because this score is based on
on-chain deposits alone, it becomes increasingly difficult to influence as the amount of funds in an
Ante Pool increases, and users may compute and verify the score using on-chain data alone.

4. Possible extensions to the Ante Protocol

We now describe possible improvements or upgrades to the Ante Protocol which we hope to see
from the community in future versions.

4.1. Multiple collateral asset support. Ante Pools may be extended to accept deposits of
multiple collateral types instead of only ETH. This will require using oracles such as Chainlink [5]
to compare the value of different assets and may also require a protocol governance procedure to
adjudicate which types of collateral are permitted.

HELLO@ANTE.FINANCE
checkTestPasses()
checkTestPasses()
decentralized_trust_score
staker_deposits
staker_deposits
challenger_deposits

ANTE PROTOCOL V0.5 LITEPAPER 5

4.2. Ante Metapools. Ante Pools may be extended to Ante Metapools, which allow stakers to
stake the same capital on several Ante Pools simultaneously. Stakers in an Ante Metapool would
earn more decay rewards by using the same deposit to express confidence in the security of several
Ante Tests, but they would would lose their deposit if any of those tests failed. Protocol governance
procedures may be relevant for deciding which Ante Tests to include in such Ante Metapools.

4.3. Emergency freezes of protocols based on Ante Tests. Ante Tests can be generalized
to include a checkTestAndFreeze() function in addition to checkTestPasses(). Protocols may
whitelist Ante Tests to allow checkTestAndFreeze() to freeze all functionality aside from emer-
gency withdrawals on their protocol in the event of an invariant failure. By thus providing a
live on-chain analogue of a traditional assert statement, Ante Tests could enable protocols to give
users greater confidence that unexpected violations of the claimed invariants will lead to orderly
emergency recovery and not a catastrophic loss of funds.

Disclaimer

This paper is for general information purposes only. It does not constitute investment advice
or a recommendation or solicitation to buy or sell any investment and should not be used in
the evaluation of the merits of making any investment decision. It should not be relied upon for
accounting, legal or tax advice or investment recommendations. This paper reflects current opinions
of the authors and is not made on behalf of Unitary or its affiliates and does not necessarily reflect
the opinions of Unitary Inc, its affiliates or individuals associated with Unitary Inc. The opinions
reflected herein are subject to change without being updated.

References

[1] Aave protocol whitepaper v2.0, 2020. https://github.com/aave/protocol-v2/raw/master/
aave-v2-whitepaper.pdf.

[2] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core, 2020. uniswap.org/

whitepaper.pdf.
[3] Guillermo Angeris and Tarun Chitra. Improved price oracles. Proceedings of the 2nd ACM

Conference on Advances in Financial Technologies, Oct 2020.
[4] Michael Egorov. Stableswap: efficient mechanism for stablecoin liquidity, 2019. https://

curve.fi/files/stableswap-paper.pdf.
[5] Steve Ellis, Air Juels, and Sergey Nazarov. ChainLink, 2017. https://research.chain.link/

whitepaper-v1.pdf.
[6] Robert Leschner and Geoffrey Hayes. Compound: The money market protocol, 2019. https:

//compound.finance/documents/Compound.Whitepaper.pdf.
[7] Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and

William J. Knottenbelt. Sok: Decentralized finance (defi), 2021. https://arxiv.org/pdf/

2101.08778.pdf.

checkTestAndFreeze()
checkTestPasses()
checkTestAndFreeze()
https://github.com/aave/protocol-v2/raw/master/aave-v2-whitepaper.pdf
https://github.com/aave/protocol-v2/raw/master/aave-v2-whitepaper.pdf
uniswap.org/whitepaper.pdf
uniswap.org/whitepaper.pdf
https://curve.fi/files/stableswap-paper.pdf
https://curve.fi/files/stableswap-paper.pdf
https://research.chain.link/whitepaper-v1.pdf
https://research.chain.link/whitepaper-v1.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://arxiv.org/pdf/2101.08778.pdf
https://arxiv.org/pdf/2101.08778.pdf

	1. Introduction
	1.1. Motivation
	1.2. Summary of the Ante Protocol

	2. System Design
	2.1. On-chain invariants and Ante Tests
	2.2. Staking, challenging, and verifying via Ante Pools
	2.3. Implementation details

	3. Applications
	3.1. Signaling legitimacy
	3.2. On-chain trust quantification

	4. Possible extensions to the Ante Protocol
	4.1. Multiple collateral asset support
	4.2. Ante Metapools
	4.3. Emergency freezes of protocols based on Ante Tests

	Disclaimer
	References

